A Denotational Engineering of Programming Languages

Part 1: MetaSoft, CPO's and McCarthy's propositional calculus (Sections 2.1 – 2.9 of the book)

Andrzej Jacek Blikle March 8th, 2021

"Denotational Engineering of Programming Languages" by Andrzej Blikle is licensed under a Creative Commons: Attribution — NonCommercial — NoDerivatives.

MetaSoft

A definitional metalanguage for denotational definitions of programming languages

> Developed in Institute of Computer Science Polish Academy of Sciences in the years 1970 - 1980

MetaSoft notation — functions

a:A (a!:A)	— a is (is not) an element of A
{a ₁ ,,a _n }	— a finite set
{ }	— an empty set

f.a- f(a),f.a.b.c= ((f(a))(b))(c) - (Haskell) Curry's notationf.a = !, f.a = ?- f is defined/undefined for a

— sequential composition of functions

f = $[a_1/b_1, ..., a_n/b_n]$ [] [A].a = a if a : A

 $f : A \rightarrow A$

 $f^n = f^{n-1} \bullet f$

 $f^0 = [A]$

 $(f \bullet g).a = g.(f.a)$

- mapping: $f.a_i = b_i$ and undefined otherwise — empty function
- identity function; where A is a set
- a (possibly partial) function from A to A
- 0-th iteration
- n-th iteration

MetaSoft notation — functions (cont.)

 $f\,:\,A\to B,\quad g:C\to D$

 $f \blacklozenge g : A | C \to B | D$ — f overwritten by g

- $(f \blacklozenge g).x =$ $g.x = ! \rightarrow g.x$ if g.x defined then g.x $g.x = ? \rightarrow f.x$ if g.x undefined then f.x
- $f \blacklozenge g = f \mid g \qquad \qquad --if f \cap g = \{ \}$

 $f[a_1/b_1,...,a_n/b_n] - f$ overwritten by a mapping $[a_1/b_1,...,a_n/b_n]$

$$\begin{array}{ll} f[a_1/b_1,\ldots,a_n/b_n].x=\\ x=a_1 \twoheadrightarrow b_1 & \text{if } x=a_1 \text{ then, } f.x=b_1, \text{ and otherwise}\\ \ldots\\ x=a_n \twoheadrightarrow b_n & \text{if } x=a_n \text{ then, } f.x=b_n, \text{ and otherwise}\\ \textbf{true} \twoheadrightarrow f.x & \text{in all other cases } f.x \end{array}$$

MetaSoft notation: sets (domains)

{a ₁ ,,a _n }, { }	— a <u>finite set</u> , an <u>empty set</u>	
Sub.A, FinSub.A	— families of all (all finite) subsets of A,	
A B	— union of A and B,	
AxB	 Cartesian product of A and B, 	
Ac+	— all finite (nonempty) tuples (a ₁ ,,a _n); a _i : A	
()	— empty tuple	Cartesian
$A^{c^*} = A^{c+} \mid \{()\}$	- all finite (possibly empty) tuples on A	power
$A \rightarrow B$	— all partial functions from A to B	•
$A \mapsto B$	— all total function from A to B	

 $Rel(A,B) = \{rel | rel \subseteq A \times B\}$ — binary relations

typical domain equations:

```
val : Value= Data x Typevat : Valuation= Identifier \Rightarrow Value
```

vat – a metavariable running over Valuation

Chain-complete partially ordered sets

 \subseteq : Rel(A,A) = {R | R \subseteq A x A} ordering relation in A

DEF. partial order: reflexivity a ⊑ a if $a \sqsubseteq b$ and $b \sqsubseteq c$ then $a \sqsubseteq c$ transitivity if $a \sqsubseteq b$ and $b \sqsubseteq a$ then a = b weak antisymmetricity

b : B is called the least element in $B \subseteq A$ if $(\forall b' : B) b \subseteq b'$ a : A is called the <u>upper bound</u> of $B \subseteq A$, if $(\forall b : B) b \sqsubseteq a$

a chain $a_1 \sqsubseteq a_2 \sqsubseteq a_3 \sqsubseteq \dots$ $lim(a_i | i = 1, 2, ...)$ limit = least upper bound (if exists)

Def. (A, \sqsubseteq , Φ) is called <u>chain-complete partially ordered set</u> (CPO) if: 1. every chain in A has a limit,

2. Φ is the least element of A

Continuous functions in CPO's

 $(A, \sqsubseteq, \Phi) - CPO$

DEF $f : A \mapsto A$ is continuous if

- 1. if $a_1 \sqsubseteq a_2 \sqsubseteq \dots$ then $f.a_1 \sqsubseteq f.a_2 \sqsubseteq \dots$,
- 2. if $a_1 \sqsubseteq a_2 \sqsubseteq \dots$ has a limit then $f a_1 \sqsubseteq f a_2 \sqsubseteq \dots$ has a limit,
- 3. $\lim(f.a_1 \subseteq f.a_2 \subseteq ...) = f.[\lim(a_1 \subseteq a_2 \subseteq ...)].$

A composition of continuous functions is continuous.

Kleene's fixed-point theoremA fundament for recursive definitions of
function and domainsIf
$$f: A \mapsto A$$
 is continuous, then the least solution of
 $x = f.x$ exists and equals $\lim(f^n.\Phi \mid n = 0, 1, 2, ...).$

DEF <u>A set-theoretic CPO</u> — A CPO of sets with ordering by inclusion and the empty set { } as the least element. E.g. the Sub.A.

A fixed-point definition of 2ⁿ

Nat = {0,1,2,}	 natural numbers
$(Nat \rightarrow Nat, \subseteq, [])$	— a set-theoretic CPO of partial functions on Nat
f●g	 — continuous on both arguments
f ♦ g	 — continuous on both arguments

```
power : Number \mapsto Number power.n = 2<sup>n</sup>
power.n =
n = 0 \rightarrow 1
n > 0 \rightarrow 2 * power.(n-1) A traditional recursive
definition
```

A fixed-point definition

```
power = zero \blacklozenge (minus • power) • double the overwriting of disjoint
where zero.n = [0/1]
minus.n = n-1 for n > 0
minus.0 = ?
double.n = 2 * n
power = lim.([0/1], [0/1, 1/2], [0/1, 1/2, 2/4], ...)
```

A CPO of formal languages

 $\begin{array}{ll} \mathsf{A} = \{a_1, \dots, a_n\} & - \text{ an alphabet} \\ \mathsf{Lan}(\mathsf{A}) = \{\mathsf{L} \mid \mathsf{L} \subseteq \mathsf{A}^*\} & - \text{ the set of all languages over } \mathsf{A} \\ (\mathsf{Lan}(\mathsf{A}), \subseteq, \{\}) & - \mathsf{CPO} \text{ of formal languages over } \mathsf{A} \end{array}$

All function defined above, and union, are <u>continuous</u> $\begin{array}{l} \underline{Associativity} \\ (P Q) L = P (Q L) & will be written P Q L \\ (P | Q) L = (P L) | (Q L) & will be written PL | QL \end{array}$

Equational grammars (example)

car : Character	= {a,,z,0,,9}		polynomial equations
ide : Identifier exp : Expression	= Character Character © Identifier = Identifier {(} © Expression © {+} © Expression © {)}		
In a compact form	n		
car : Character	= {a,, z, 0,, 9} te	ermin	al symbols
ide : Identifier	= Character ⁺		
exp: Expression	= Identifier (Expression + E	xpres	sion)

Equational (polynomial) grammars are equivalent to Chomsky's context-free grammars and Backus-Naur grammars

A CPO of binary relations

```
\begin{array}{ll} (\operatorname{Rel}(A,A),\subseteq,\{\}) & \quad & -\operatorname{CPO} \text{ of binary relations} \\ [A] = \{(a, a) \mid a:A\} & \quad & -\operatorname{identity relations} (function) \\ P, R : \operatorname{Rel}(A,A) \\ P \bullet R = \{(a, c) \mid (\exists b:B) \ (a \ P \ b \ \& \ b \ R \ c)\} & \quad & -\operatorname{composition} \\ R^0 = [A] \\ R^n = R \bullet \ R^{n-1} \ \text{for } n > 0 \\ R^+ = R^1 \mid R^2 \mid \dots \\ R^* = R^+ \mid R^0 \end{array}
```

All function defined above, and union, are continuous

Associativityanddistributivityover union(P R) Q = P(R Q)will be writtenP R Q(P | R) Q = (P Q) | (R Q)will be writtenP Q | R Q

If P, R – functions, then P \bullet R – function

A CPO of domains

(Domain, \subseteq , { }) — the Cohn's CPO of domains

DEF (M.P. Cohn)

(1) { }, Identifier, Integer, Character, ... belong to Domain

- (2) Domain is closed under all our domain operations (see below)
- (2) Domain is closed under enumerable unions of sets

A B	— set-theoretic union			
$A \cap B$	 — set-theoretic intersection 	continuous and		
AxB	 Cartesian product 	noncontinuous		
A ^{cn}	 Cartesian n-th power 	domain constructors		
A ^{c+}	 Cartesian plus-iteration 			
A ^{c*}	 Cartesian star-iteration 			
FinSub.A	 — the set of all finite subsets 			
$A \Longrightarrow B$	 the set of all mappings including the empty mapping 			
A – B	— set-theoretic difference re	d indicates non-continuity		
Sub. <mark>A</mark>	 the set of all subsets 			
$A \rightarrow B$	 — the set of all functions from A to B 			
$A \mapsto B$	 — the set of all total functions from A to B 			
Rel.(<mark>A,B</mark>)	— the set of all relations between	A and B		

Non-continuous domain constructors

Domain equations

Data	= Number	Record
Record	= Identifier	\Rightarrow Data
State	= Identifier	\Rightarrow Data
Instruction	= State	→ State

A "legal" set of equations since recursion does not involve the noncontinuous operator \rightarrow .

Abstract errors — error messages (1/2)

In **Lingua** error messages are generated whenever an operation can't be performed.

E.g. the evaluation of expression a/b should generate an error whenever:

- variables a or b have not been declared (at all),
- variables a or b have not been declared as numbers,
- the current value of b is zero,
- the value of a/b is too large in a given implementation.

Notational convention: The syntax of programs is typeset in Courier New green

dat: Data — a domain of data dat: DataE = Data | Error err : Error — a domain of errors (a parameter of our model) In our model errors are words, e.g. a/0 = 'division-by-zero'

Abstract errors — error messages (2/2)

op : Data₁ x...x Data_n \rightarrow Data with <u>computable</u> undefinedness ope : DataE₁ x...x DataE_n \mapsto DataE

coincides with ope when not error

<u>Transparency</u> for errors:

ope. $(d_1, \ldots, d_n) = d_k$ if d_k the first error in (d_1, \ldots, d_n)

Errors may be handled in two ways:

reactively — transparency proactively — a restoration mechanism; e.g. in SQL

> For technical simplicity we assume transparency for most operations in our model

Propositional calculus of Mc'Carthy (non-transparent operations)

if $x \neq 0$ and 1/x < 10 then x := x+1 else x := x-1 fi

If **and** is transparent, then our program aborts for x = 0.

The solution of John McCarthy:

ff **and-m** ee = ff — lazy evaluation left to right

error or undefinedness

or-m	tt	ff	ee
tt	tt	tt	tt
ff	tt	ff	ee
ee	ee	ee	ee

and-m	tt	ff	ee	not-m	
tt	tt	ff	ee	tt	ff
ff	ff	ff	ff	ff	tt
ee	ee	ee	ee	ee	ee

Propositional calculus of Mc'Carthy some properties

and-m, or-m — associative

 $p and-m q \neq q and-m p - not commutative$

 $p \text{ or-m (not } p) \neq ff - never false$

and-m is distributive over or-m only on the right-hand side, i.e.

p and-m (q or-m s) = (p and-m q) or-m (p and-m s)

Propositional calculus of Kleene

Even "more lazy" than McCarthy's calculus

or-k	tt	ff	ee
tt	tt	tt	tt
ff	tt	ff	ee
ee	tt	ee	ee

and-k	tt	ff	ee
tt	tt	ff	ee
ff	ff	ff	ff
ee	ee	ff	ee

not-k	
tt	ff
ff	tt
ee	ee

Now commutativity

p **or-k** q = q **or-k** p p **and-k** q = q **and-k** p

hence in particular

tt or-k ee = ee or-k tt = tt ff and-k ee = ee and-k ff = ff If ee may be an infinite computation Kleene's calculus requires a simultaneous evaluation of arguments.

