A Denotational Engineering of Programming Languages

Part 1: MetaSoft, CPO's and McCarthy's propositional calculus (Sections 2.1-2.9 of the book)

Andrzej Jacek Blikle
March 8 ${ }^{\text {th }}, 2021$

MetaSoft

A definitional metalanguage for denotational definitions of programming languages

Developed in Institute of Computer Science
Polish Academy of Sciences in the years 1970-1980

MetaSoft notation - functions

$\begin{aligned} & a: A \quad(a!: A) \\ & \left\{a_{1}, \ldots, a_{n}\right\} \\ & \} \end{aligned}$	- a is (is not) an element of A - a finite set - an empty set
f.a -f(a),	
f.a.b.c $=((f(a))(\mathrm{b}))(\mathrm{c})-($ Haskell $)$ Curry's notation	
$\mathrm{f} . \mathrm{a}=\mathrm{l}, \mathrm{f} . \mathrm{a}=$? $\quad-\mathrm{f}$ is defined/undefined for a	
$(\mathrm{f} \bullet \mathrm{g}) \cdot \mathrm{a}=\mathrm{g} .(\mathrm{f} \cdot \mathrm{a})$	- sequential composition of functions
$\mathrm{f}=\left[\mathrm{a}_{1} / \mathrm{b}_{1}, \ldots, \mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}\right]$	- mapping: $\mathrm{f}_{\mathrm{a}} \mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}}$ and undefined otherwise - empty function
$[\mathrm{A}] . \mathrm{a}=\mathrm{a}$ if $\mathrm{a}: \mathrm{A}$	- identity function; where A is a set
$f: A \rightarrow A$	- a (possibly partial) function from A to A
$\mathrm{f}^{0}=[\mathrm{A}]$	- 0-th iteration
$f^{n}=f^{n-1} \bullet f$	- n-th iteration

MetaSoft notation - functions (cont.)

$f: A \rightarrow B, \quad g: C \rightarrow D$
$f \rightarrow \mathrm{~g}: \mathrm{A}|\mathrm{C} \rightarrow \mathrm{B}| \mathrm{D} \quad$ - foverwritten by g
$(f$ g) $\cdot x=$
g.x $=!\quad \rightarrow$ g.x \quad if $\mathrm{g} . \mathrm{x}$ defined then $\mathrm{g} \cdot \mathrm{x}$
$g . x=? \quad \rightarrow$ f.x \quad if $g . x$ undefined then f.x
$f(g=f \mid g \quad-i f f \cap g=\{ \}$
$f\left[a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right]$ - f overwritten by a mapping $\left[a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right]$

$$
f\left[a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right] \cdot x=
$$

$x=a_{1} \rightarrow b_{1} \quad$ if $x=a_{1}$ then, $f . x=b_{1}$, and otherwise
$x=a_{n} \rightarrow b_{n} \quad$ if $x=a_{n}$ then, $f . x=b_{n}$, and otherwise true $\rightarrow f . x \quad$ in all other cases f.x

MetaSoft notation: sets (domains)

$\left\{a_{1}, \ldots, a_{n}\right\},\{ \} \quad$ - a finite set, an empty set
Sub.A, FinSub.A - families of all (all finite) subsets of A,
A|B
$A \times B$

- union of A and B,
$A^{c+} — \quad$ - all finite (nonempty) tuples $\left(a_{1}, \ldots, a_{n}\right) ; a_{i}: A$
()
- empty tuple

Cartesian
$\mathrm{A}^{\mathrm{c}^{*}}=\mathrm{A}^{\mathrm{c}+} \mid\{()\} \quad$ - all finite (possibly empty) tuples on A
$A \mapsto B$

- all partial functions from A to B
$A \Rightarrow B \quad$ - all mappings (finite functions) from A to B
$\operatorname{Rel}(A, B)=\{r e l \mid r e l \subseteq A \times B\}$ - binary relations
typical domain equations:
val: Value $=D$
vat: Valuation $=1 d$
Data \times Type
vat : Valuation $=$ Identifier \Rightarrow Value
vat - a metavariable running over Valuation

Chain-complete partially ordered sets

$\sqsubseteq: \operatorname{Rel}(A, A)=\{R \mid R \subseteq A \times A\} \quad$ ordering relation in A
DEF. partial order:
$\mathrm{a} \subseteq \mathrm{a}$
if $\mathrm{a} \subseteq \mathrm{b}$ and $\mathrm{b} \subseteq \mathrm{c}$ then $\mathrm{a} \subseteq \mathrm{c}$
if $\mathrm{a} \subseteq \mathrm{b}$ and $\mathrm{b} \subseteq \mathrm{a}$ then $\mathrm{a}=\mathrm{b} \quad$ weak antisymmetricity
$b: B$ is called the least element in $B \subseteq A$ if $\left(\forall b^{\prime}: B\right) b \subseteq b^{\prime}$
a : A is called the upper bound of $B \subseteq A$, if $(\forall b: B) b \subseteq a$
$\mathrm{a}_{1} \sqsubseteq \mathrm{a}_{2} \sqsubseteq \mathrm{a}_{3} \sqsubseteq \ldots \quad$ a chain
$\lim \left(a_{i} \mid i=1,2, \ldots\right) \quad$ limit $=$ least upper bound (if exists)
Def. $(\mathrm{A}, \sqsubseteq, \Phi)$ is called chain-complete partially ordered set (CPO) if:

1. every chain in A has a limit,
2. Φ is the least element of A

Continuous functions in CPO's

$(\mathrm{A}, \check{ } \subseteq, \Phi) \quad-\mathrm{CPO}$
DEF $f: A \mapsto A$ is continuous if

1. if $\mathrm{a}_{1} \sqsubseteq \mathrm{a}_{2} \sqsubseteq \ldots$ then $\mathrm{f} . \mathrm{a}_{1} \subseteq \mathrm{f} . \mathrm{a}_{2} \sqsubseteq \ldots$,
2. if $\mathrm{a}_{1} \sqsubseteq \mathrm{a}_{2} \sqsubseteq \ldots$ has a limit then f. $\mathrm{a}_{1} \sqsubseteq \mathrm{f} . \mathrm{a}_{2} \sqsubseteq \ldots$ has a limit,
3. $\lim \left(f . a_{1} \sqsubseteq \mathrm{f} . \mathrm{a}_{2} \sqsubseteq \ldots\right)=\mathrm{f} .\left[\lim \left(\mathrm{a}_{1} \sqsubseteq \mathrm{a}_{2} \sqsubseteq \ldots\right)\right]$.

A composition of continuous functions is continuous.
Kleene's fixed-point theorem

A fundament for recursive definitions of function and domains

If $f: A \mapsto A$ is continuous, then the least solution of $x=f . x$
exists and equals $\lim \left(\mathrm{f}^{\mathrm{n}} . \Phi \mid \mathrm{n}=0,1,2, \ldots\right)$.

DEF A set-theoretic CPO - A CPO of sets with ordering by inclusion and the empty set \{ \} as the least element. E.g. the Sub.A.

A fixed-point definition of 2^{n}

Nat $=\{0,1,2, \ldots\} \quad-$ natural numbers
(Nat \rightarrow Nat, \subseteq, []) — a set-theoretic CPO of partial functions on Nat
$f \bullet g$
f g

- continuous on both arguments
- continuous on both arguments
power: Number \mapsto Number power. $\mathrm{n}=2^{\mathrm{n}}$
power.n =

$$
\begin{array}{ll}
n=0 \rightarrow 1 & \text { A tradition } \\
n>0 \rightarrow 2 \text { * power. }(n-1) & \text { definition }
\end{array}
$$

A fixed-point definition power = zero (minus \bullet power) \bullet double the overwriting of disjoint where

```
zero.n = [0/1]
minus.n = n-1 for n>0
minus.0 = ?
double.n = 2*n
```

power $=\lim .([0 / 1],[0 / 1,1 / 2],[0 / 1,1 / 2,2 / 4], \ldots)$

A CPO of formal languages

$$
\begin{aligned}
& A=\left\{a_{1}, \ldots, a_{n}\right\} \quad-\text { an alphabet } \\
& \operatorname{Lan}(A)=\left\{L \mid L \subseteq A^{*}\right\} \quad \text { - the set of all languages over } A \\
& \text { (Lan }(\mathrm{A}), \subseteq,\{ \}) \quad-\mathrm{CPO} \text { of formal languages over } \mathrm{A} \\
& P, Q: \operatorname{Lan}(A) \\
& P \subset Q=\{p \odot q \mid p: P \text { and } q: Q\} \quad \text { - concatenation } \\
& P Q \quad=\{p q \mid p: P \text { and } q: Q\} \quad \text { - (an alternative notation) } \\
& \mathrm{P}^{0}=\{\varepsilon\} \\
& P^{n} \quad=P P^{(n-1)} \text { for } n>0 \quad \text { - } n \text {-th power } \\
& \mathrm{P}^{+}=\mathrm{P}^{1}\left|\mathrm{P}^{2}\right| \ldots \text { - plus-power } \\
& \mathrm{P}^{*} \quad=\mathrm{P}^{+} \mid \mathrm{P}^{0} \quad \text { - star-power } \\
& \mathrm{Pc}^{*} \quad=\left\{\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right) \mid \mathrm{n} \geq 0 \text { and } \mathrm{p}_{\mathrm{i}}: \mathrm{P}\right\} \text { - Cartesian power }
\end{aligned}
$$

All function defined above, and union, are continuous

> | Associativity and distributivity |
| :--- |
| $(P Q) L=P(Q L) \quad$ will be written $P Q L$ |
| $(P \mid Q) L=(P L) \mid(Q L)$ will be written $P L \mid Q L$ |

Equational grammars (example)

```
car : Character = {a,..,z,0,\ldots,,9}
polynomial equations
ide : Identifier = Character| Character © Identifier
exp: Expression = Identifier | {(} © Expression © {+}` Expression © {)}
In a compact form
car : Character \(=\{a, \ldots, z, 0, \ldots, 9\} \quad\) terminal symbols
ide : Identifier = Character \({ }^{+}\)
exp:Expression = Identifier|(Expression + Expression )
```

Equational (polynomial) grammars are equivalent to Chomsky's context-free grammars and Backus-Naur grammars

A CPO of binary relations

```
\((\operatorname{Rel}(\mathrm{A}, \mathrm{A}), \subseteq,\{ \}) \quad\) - CPO of binary relations
\([A]=\{(a, a) \mid a: A\} \quad\) - identity relations (function)
P, R: Rel(A,A)
\(P \bullet R=\{(a, c) \mid(\exists b: B)(a P b \& b R c)\}\) - composition
\(\mathrm{R}^{0}=[\mathrm{A}]\)
\(R^{n}=R \bullet R^{n-1}\) for \(n>0\)
\(R^{+}=R^{1}\left|R^{2}\right| \ldots\)
\(R^{*}=R^{+} \mid R^{0}\)
```

All function defined above, and union, are continuous
Associativity and distributivity over union $(P R) Q=P(R Q) \quad$ will be written $P R Q$ $(P \mid R) Q=(P Q) \mid(R Q) \quad$ will be written $P Q \mid R Q$

If P, R - functions, then $P \bullet R-$ function

A CPO of domains

(Domain, $\subseteq,\{ \}$) - the Cohn's CPO of domains
DEF (M.P. Cohn)
(1) $\{$ \}, Identifier, Integer, Character, ... belong to Domain
(2) Domain is closed under all our domain operations (see below)
(2) Domain is closed under enumerable unions of sets
$A \mid B \quad$ - set-theoretic union
$A \cap B \quad$ - set-theoretic intersection
$A \times B \quad$ - Cartesian product
Acn - Cartesian n-th power
$A^{c+} \quad$ - Cartesian plus-iteration
Ac* - Cartesian star-iteration
FinSub.A
$A \Rightarrow B$
$A-B$
Sub.A
$A \rightarrow B$
$A \mapsto B$
Rel.(A,B)

- the set of all finite subsets
- the set of all mappings including the empty mapping
- set-theoretic difference red indicates non-continuity
- the set of all subsets
- the set of all functions from A to B
- the set of all total functions from A to B
- the set of all relations between A and B

Non-continuous domain constructors

$$
\begin{aligned}
& A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \\
& B-A_{1} \supseteq B-A_{2} \supseteq B-A_{3} \supseteq \ldots \text { - not a chain }
\end{aligned}
$$

$$
\begin{array}{ll}
A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \rightarrow A & \text { - a chain of mds } \\
A_{1} \rightarrow B \subseteq A_{2} \rightarrow B \subseteq A_{3} \rightarrow B \subseteq \ldots & \text { - a chain }
\end{array} \quad \begin{gathered}
\text { Total functions on } \\
\text { A not included }
\end{gathered}
$$

$$
\left(\lim \left\{A_{i}\right\}\right) \rightarrow B \quad \neq \lim \left\{A_{i} \rightarrow B\right\}
$$

$\mathrm{A}_{1} \subseteq \mathrm{~A}_{2} \subseteq \mathrm{~A}_{3} \subseteq \ldots \rightarrow \mathrm{~A} \quad$ - a chain of mds
$B \rightarrow A_{1} \subseteq B \rightarrow A_{2} \subseteq B \rightarrow A_{3} \subseteq \ldots$ - a chain
$B \rightarrow\left(\lim \left\{A_{i}\right\}\right) \quad \neq \lim \left\{B \rightarrow A_{i}\right\}$
$A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \rightarrow A \quad$ - a chain of mds $A_{1} \mapsto B \subseteq A_{2} \mapsto B \subseteq A_{3} \mapsto B \subseteq \ldots$ - a chain $\left(\lim \left\{A_{i}\right\}\right) \mapsto B \neq \lim \left\{A_{i} \mapsto B\right\}$
$A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \rightarrow A \quad$ - a chain of mds Sub. $A_{1} \subseteq$ Sub. $A_{2} \subseteq$ Sub. $A_{3} \subseteq \ldots$ - a chain Sub. $\left(\lim \left\{A_{i}\right\}\right) \quad \neq \lim \left\{\right.$ Sub. $\left.A_{i}\right\}$

Domain equations

Data	$=$ Number	Record	A "legal" set of equations
Record	$=$ Identifier	\Rightarrow Data	since recursion does not involve the noncontinuous
State	$=$ Identifier	\Rightarrow Data	operator \rightarrow.

State	$=$ Identifier	\Rightarrow Data \mid Procedure
Procedure	$=$ State	\rightarrow State

Abstract errors - error messages (1/2)

In Lingua error messages are generated whenever an operation can't be performed.
E.g. the evaluation of expression a / b should generate an error whenever:

- variables a or b have not been declared (at all),
- variables a or b have not been declared as numbers,
- the current value of b is zero,
- the value of a / b is too large in a given implementation.

Notational convention: The syntax of programs is typeset in Courier New green

dat: Data	- a dom
dat: DataE = Data \mid Error	
err : Error	- a dom
(a pa	
In our model errors are words, e.g.	
a/0 = 'division-by-zero'	

Abstract errors - error messages (2/2)

op : Data $_{1} \quad$ x...x Data ${ }_{n} \rightarrow$ Data with computable undefinedness ope : DataE ${ }_{1} \times \ldots$ DataE $_{n} \mapsto$ DataE coincides with ope when not error

Transparency for errors: ope. $\left(d_{1}, \ldots, d_{n}\right)=d_{k}$ if d_{k} the first error in $\left(d_{1}, \ldots, d_{n}\right)$

Errors may be handled in two ways:
reactively - transparency
proactively - a restoration mechanism; e.g. in SQL

> For technical simplicity we assume transparency for most operations in our model

Propositional calculus of Mc'Carthy

(non-transparent operations)
if $x \neq 0$ and $1 / x<10$ then $x:=x+1$ else $x:=x-1$ fi

If and is transparent, then our program aborts for $x=0$.
The solution of John McCarthy:
ff and-m ee $=\mathrm{ff} \quad$ - lazy evaluation left to right
error or undefinedness

or-m	$\mathbf{t t}$	$\mathbf{f f}$	ee
$\mathbf{t t}$	tt	tt	tt
$\mathbf{f f}$	tt	ff	ee
ee	ee	ee	ee

and-m	$\mathbf{t t}$	$\mathbf{f f}$	ee
$\mathbf{t t}$	tt	ff	ee
$\mathbf{f f}$	ff	ff	ff
ee	ee	ee	ee

not-m	
$\mathbf{t t}$	ff
$\mathbf{f f}$	tt
$\mathbf{e e}$	ee

Propositional calculus of Mc'Carthy some properties

and-m, or-m	- associative
p and-m $q \neq q$ and-m p	- not commutative
p or-m $($ not $p) \neq \mathrm{ff}$	- never false

and-m is distributive over or-m only on the right-hand side, i.e.
p and-m (q or-m s) $=(\mathrm{p}$ and-m q$)$ or-m (p and- m s)

Propositional calculus of Kleene

Even „more lazy" than McCarthy's calculus

$\mathbf{0 r - k}$	$\mathbf{t t}$	$\mathbf{f f}$	ee
$\mathbf{t t}$	tt	tt	tt
$\mathbf{f f}$	tt	ff	ee
ee	tt	ee	ee

and-k	$\mathbf{t t}$	$\mathbf{f f}$	ee
$\mathbf{t t}$	tt	ff	ee
$\mathbf{f f}$	ff	ff	ff
$\mathbf{e e}$	ee	ff	ee

not-k	
$\mathbf{t t}$	ff
$\mathbf{f f}$	tt
$\mathbf{e e}$	ee

Now commutativity
por-k q = q or-k p p and-k $q=q$ and-k p
hence in particular
tt or-k ee $=$ ee or-k tt $=\mathrm{tt}$
ff and-k ee $=$ ee and-k ff $=\mathrm{ff}$

If ee may be an infinite computation Kleene's calculus requires a simultaneous evaluation of arguments.

